Critical polarization of the eight-vertex model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 7 L70
(http://iopscience.iop.org/0301-0015/7/5/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:57

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Critical polarization of the eight-vertex model

I G Enting and D S Gaunt
Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS, UK

Received 4 February 1974

Abstract

We investigate by series analysis the polarization of the eight-vertex model as a function of electric field at T_{0} and zero magnetic field, obtaining estimates of the exponent δ_{θ}. These estimates are combined with a conjectured scaling relation to give a simple prediction for the spontaneous polarization exponent β_{e}.

The eight-vertex model has been extensively studied in recent years, there now being a number of critical exponents known exactly (Barber and Baxter 1973). A point of particular interest is that many of these indices vary continuously with the interaction parameters. The eight-vertex model was originally proposed in terms of dipole 'arrows' on a square lattice but can, as shown by Kadanoff and Wegner (1971) and Wu (1971), be regarded as an Ising spin system. As emphasized by Barber and Baxter, the two formulations lead naturally to two distinct types of ordering, a spin ordering with conjugate 'magnetic' field, \mathscr{H}, and an 'arrow' or 'spin-pair' ordering with conjugate electric field, J.

To refer to critical exponents in a system with two fields, we use the notation applied by Enting (1973) to the special case of the modified F model (Brascamp et al 1973). The exponents, $\beta, \gamma^{\prime}, \gamma, \delta$ are given subscripts e or m if they describe variations with electric or magnetic field respectively. Barber and Baxter have investigated β_{m}. The present work considers δ_{e}.

The hamiltonian considered is

$$
\begin{equation*}
H=-\sum_{\{i, j\}}^{(1)} J \sigma_{i} \sigma_{j}-\sum_{\{i, j\}}^{(2)} J_{2} \sigma_{i} \sigma_{j}-\sum_{\{i, j, k, l\}}^{(4)} J_{4} \sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l}-\sum_{\{i\}} \mathscr{H}_{\sigma_{i}} \tag{1}
\end{equation*}
$$

where $\Sigma^{(1)}, \Sigma^{(2)}, \Sigma^{(4)}$ are respectively sums over all nearest-neighbour pairs, all secondneighbour pairs and all clusters of four spins on a square of nearest-neighbour bonds. The general eight-vertex model solved by Baxter (1972) allows the J_{2} interaction to depend on direction but does not include the fields J, \mathscr{H}.

For $\mathscr{H}=0$ we have obtained power series expansions for the configurational free energy

$$
\begin{aligned}
& \ln \Lambda=\sum_{n=2}^{\infty} L_{n}(v, w) u^{n} \\
&= u^{2}\left(v^{2} w^{4}\right)+u^{3}\left(2 v^{4} w^{4}\right)+u^{4}\left(2 v^{3} w^{6}-4 \frac{1}{2} v^{4} w^{8}+4 v^{5} w^{6}+3 v^{6} w^{4}\right) \\
&+u^{5}\left(8 v^{5} w^{6}-16 v^{6} w^{8}+16 v^{7} w^{6}+4 v^{8} w^{4}\right)+u^{6}\left(6 v^{4} w^{8}-28 v^{5} w^{10}+20 v^{6} w^{8}\right. \\
&\left.+33 \frac{1}{3} v^{6} w^{12}+20 v^{7} w^{6}-44 v^{7} w^{10}-15 v^{8} w^{8}+40 v^{9} w^{6}+5 v^{10} w^{4}\right)+u^{7}\left(36 v^{6} w^{8}\right. \\
&-160 v^{7} w^{10}+120 v^{8} w^{8}+188 v^{8} w^{12}+40 v^{9} w^{6}-240 v^{9} w^{10}+60 v^{10} w^{8}
\end{aligned}
$$

$$
\begin{align*}
& \left.+80 v^{11} w^{6}+6 v^{12} w^{4}\right)+u^{8}\left(1 v^{4} w^{8}+18 v^{5} w^{10}+4 v^{6} w^{8}-150 v^{6} w^{12}+88 v^{7} w^{10}\right. \\
& +370 v^{7} w^{14}+132 v^{8} w^{8}-452 v^{8} w^{12}-302 \frac{1}{4} v^{8} w^{16}-376 v^{9} w^{10}+556 v^{9} w^{14} \\
& +424 v^{10} w^{8}+275 v^{10} w^{12}+70 v^{11} w^{6}-648 v^{11} w^{10}+333 \frac{7}{2} v^{12} w^{8}+140 v^{13} w^{6} \\
& \left.+7 v^{14} w^{4}\right)+\ldots \tag{2}
\end{align*}
$$

with

$$
\begin{aligned}
u & =\mathrm{e}^{-4 \beta J} \\
v & =\mathrm{e}^{-4 \beta J_{8}} \\
w & =\mathrm{e}^{-2 \beta J_{4}} .
\end{aligned}
$$

The polarization per bond is then

$$
\begin{equation*}
P=1+\frac{1}{2} \frac{\partial}{\partial J} k T \ln \Lambda . \tag{3}
\end{equation*}
$$

The exponent δ_{θ} is defined by

$$
P(u) \sim(1-u)^{1 / \delta_{0}}, \quad\left(T=T_{\mathrm{o}}\right)
$$

We have used Baxter's formula for T_{c} and obtained estimates of $1 / \delta_{\mathrm{e}}$ from Padé approximants to $(1-u)(\mathrm{d} / \mathrm{d} u) \ln P$ evaluated at $u=1$. These estimates are shown in figure 1.

Figure 1. The conjectured variation $1 / \delta_{\theta}$ with J_{4} / J_{2}. Numerical estimates are represented by the error bars.
To interpret these results we postulate a scaling relation in the form of a generalized homogeneous function (GHF)

$$
\begin{equation*}
\lambda G(\epsilon, \mathscr{H}, J)=G\left(\lambda^{a} \epsilon, \lambda^{b} \mathscr{H}, \lambda^{c} J\right) \tag{4}
\end{equation*}
$$

where $\epsilon=T-T_{c}$. The consequences of this type of assumption have been discussed by Hankey and Stanley (1972). For $J=0$ the work of Barber and Baxter suggests

$$
\begin{equation*}
a=\frac{\bar{\mu}}{\pi}=1-\frac{1}{\pi} \cos ^{-1}\left(\tanh \frac{2 J_{4}}{k T_{\mathrm{c}}}\right), \quad \text { range } 0 \text { to } 1 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
b=\frac{15}{18} . \tag{6}
\end{equation*}
$$

This predicts $\delta_{\mathrm{m}}=15$ which is consistent with series results obtained by Gaunt (1974).
For $J_{4}=0$, ie $a=\frac{1}{2}$ the GHF hypothesis is supported by the work of Grover (1973) which together with the work of Brascamp et al (1973) and Enting (1973, 1974) indicates

$$
\begin{equation*}
c=\frac{7}{8} \tag{7}
\end{equation*}
$$

at $J_{4}=0$. The scaling-perturbation theory approach of Kadanoff and Wegner (1971) shows that c varies with J_{4} and if we assume that β_{θ} varies linearly with $\pi / \bar{\mu}$ (as $\gamma_{\mathrm{m}}, \beta_{\mathrm{m}}$ are conjectured to do; Barber and Baxter 1973), the value and derivative of β_{e} at $J_{4}=0$ give

$$
\begin{array}{ll}
\beta_{\mathrm{e}}=\frac{1}{4}\left(\frac{\pi}{\bar{\mu}}\right)-\frac{1}{4} & \text { range } 0 \text { to } \infty \\
c=\frac{3}{4}+\frac{1}{4} \frac{\bar{\mu}}{\pi} & \text { range } \frac{3}{4} \text { to } 1 \\
\delta_{\mathrm{e}}=\frac{c}{1-c} & \text { range } 3 \text { to } \infty . \tag{10}
\end{array}
$$

(The range of values taken by a and c is consistent with the restrictions given by Hankey and Stanley.) The values of $1 / \delta_{\theta}$ obtained from these expressions are also shown in figure 1 for comparison with the series estimates. The agreement is fairly good and it seems that (9), (10) give a good representation of δ_{e} over the range considered.

In conclusion we repeat that the general eight-vertex model includes anisotropic second-neighbour interactions. Barber and Baxter (1973) found that a single variable $\bar{\mu}$ was sufficient to describe $\alpha, \beta_{\mathrm{m}}$ for arbitrary anisotropy. Whether the same variable can also describe δ_{e} in the anisotropic case remains an open question.

The series expansions were manipulated using a computer program written by Dr J L Martin. One of the authors (IGE) wishes to acknowledge the support of a Science Research Council research grant.

References

Barber M N and Baxter R J 1973 J. Phys. G: Solid St. Phys. 6 2913-21
Baxter R J 1972 Ann. Phys., NY 70 193-228
Brascamp H J, Kunz H and Wu F Y 1973 J. Phys. C: Solid St. Phys. 6 L164-6
Enting I G 1973 J. Phys. C: Solid St. Phys. 6 L302-3
——1974 J. Phys. C: Solid St. Phys. 7 in the press
Gaunt D S 1974 J. Phys. A: Math., Nucl. Gen. submitted for publication
Grover M K 1973 Phys. Lett. 44A 253
Hankey A and Stanley H E 1972 Phys. Rev. B 6 3515-42
Kadanoff L P and Wegner F J 1971 Phys. Rev. B 4 3989-93
Wu F Y 1971 Phys. Rev. B 4 2312-4

